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Analysis of a rotating flow at small Reynolds number 

By MICHAEL BENTWICH 
Technion, Haifa, Israel 

(Received 18 September 1962 and in revised form 13 November 1963) 

A solution of the Navier-Stokes equations is obtained for the flow resulting from 
the steady rotation of a semi-infinite right circular (solid) cylinder about its 
vertical axis. Incompressible viscous fluid is assumed to fill the space outside the 
cylinder on one side of a horizontal solid plane. In  the proposed method of 
solution the pertinent physical quantities are expressed as series in positive 
powers of the Reynolds number Re with space-dependent coefficients. It is 
shown that the coefficients of (Re)” can be obtained by solving linear partial 
differential equations which depend on the coefficients of (Re)i, where i < M .  
A truncated solution, which holds for small Re, is obtained by solving for the 
first two coefficients. These results indicate that at the flat end of the cylinder 
the pressure distribution is nearly constant, yet along the adjacent bounding 
plane it rises with the radial direction. 

1. Introduction 
We obtain here the solution for the flow resulting from the steady rotation 

about its axis of 8 semi-infinite solid cylinder z 2 d/R, which is immersed in a 
large expanse of otherwise quiescent fluid. We let R denote its angular velocity 
and ( r ,  8, z )  cylindrical co-ordinates which are non-dimensionalized with respect 
to the radius R of the cylinder. The end of the cylinder is parallel to the solid 
surface z = 0, and the space on the one side of this plane and outside the cylinder 
is completely filled with fluid. It is shown that the dependent variables can be 
expanded as power series in the Reynolds number Re( = L2R2/v), in which the 
coefficients are the solutions of linear partial differential equations in r and z. 
The first two of these coefficients are obtained here by relaxation methods. 

When u, v, w denote the three components of velocity, p the density and p the 
pressure and when the physical dimensions of the problem are chosen so that 
QR and pQ2R2 are unit velocity and unit pressure respectively, the governing 
equations are 

( 1 )  

32-3 
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where all dependent variables are taken to be independent of 8. KkmBn (1921), 
Batchelor (1951), Stewartson (1953), Cochrane (1934) and others have discussed 
the solutions of equations (1 ) - (4 )  which represent the motion of fluids bounded 
by one or two rotating disks on which there may be suction. Their analyses were 
based on the assumption that the velocity field has the form 

u = rf(z), v = rg(z),  w = h(x), ( 5 )  

so that equations (1)-(4) yield a set of ordinary differential equations. Batchelor 
showed that these can be integrated in the finite or infinite ranges 0 < z < H 
or 0 < z < co when the boundary conditions are 

(6a,)  

( 6 b )  

I u = 0, w = W,, v = (w, /Q)r  when x = 0 ,  

u = 0, w = W,, v = (wh/Q)r  when z = H ,  

or Z L =  0, v =  (w,/Q)r as z+00. 

Here w,, w,, and o, are the angular velocities of the disks or the liquid a t  infinity 
and W,, W, are the rates of 'suction' at the surfaces of the disks. It should be 
pointed out that in these solutions different numbers of boundary conditions are 
imposed on various parts of the surface bounding the flow: three at z = 0 or 
z = H ,  two at  z = 00 and none at r = co. It is, of course, possible that in the case 
of the two disks the pressure and velocity distributions at r = co, H > z > 0 do 
not affect the flow in the vicinity of the origin and hence one should not, or need 
not, prescribe any conditions there. Nevertheless, the hypothesis that the 
boundary conditions have only a local effect would not explain why the number 
of conditions imposed at z = H drops from three to two as H approaches infinity. 
Nor would i t  explain why the conditions prevailing at  z = co have more weight 
than those prevailing at  r = co. The author believes that these inconsistencies 
result from the fact that equation (5) is not the most general form of velocity 
field for either the case of a single disk or the case of two disks, 

The incompleteness of the assumed velocity field becomes more apparent 
when it is treated as a particular case of the form 

m 00 

m cn 

w = h2j(z)r2j, p = kzi(x)r2i. 
j = 1  j = O  

Indeed, when this is substituted into (1)-(4) and the first (2M - 1)  powers of r are 
compared, 4M coupled ordinary differential equations governing the functions 
f :  g ,  e k ,  are obtained. With any M 

f :  + h,f ;  - g; = - 2k, + Be-l(f; + 8f3), 
hog;  + 2f1g1 = Re-Yg'; + 8g,), 

hohA = -k;++e-l(h," +4h2), 

1 the first four are 

2fl + h; = 0. 

A sufficient condition for both the integrability of these and the satisfying of all 
the other 4 ( M  - 1)  equations is thatf,, g,, h, and ki as well as all the other 'higher' 
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coeEcients should vanish identically. This reduces the 4M equations, no matter 
how large N is, to those four considered by the above-mentioned authors. 
However, triviality is unlikely to be also the necessary condition for the satisfac- 
tion of these 4 ( M -  1) equations. Indeed, since with M > 1 the differential 
system given by the 4 M  equations and with the conditions 

} ( 6 a )  
f2j+l = 0 ( j  2 O ) ,  h0 = WL or W,, h,j = 0 (j > O),  

g, == (0,/!2) or ( w h / ! 2 ) ,  g2j+l = 0 ( j  > O ) ,  when x = O , H ,  

or f2j+1= 0 (j 2 O), 91 = (@,/Q)’ gzj+.r = 0 ( j  > 0) as z+co, (66) 

is underdeterminate, and since this underdeterminacy grows with M, it is to 
be expected that infinitely many other assumptions can be made about the 
behaviour of the ‘higher’ coefficient functions. In  fact one need not consider the 
differential system for which M > 1, for even with M = 1 one imposes an 
ambiguous requirement, namely, that kh should vanish. Thus KBrmBn and 
Cochrane take k, to be zero while Stewartson assumes that it is a positive constant. 
We maintain that the extra data required to make the Mth differential system 
determinate or the choice of k, unique depend upon the conditions prevailing at  
r = GO, and if these conditions are ignored the problem tackled is not well posed. 

In  view of the incompleteness of the form of the solutions given by ( 5 )  and of 
its inability to consider the effect of the conditions prevailing at  r = co, one may 
wonder whether the flows which these solutions represent do exist in practice. It 
is not true that Cochrane’s or Stewartson’s flow must always take place in the 
fluid on one side of a large rotating disk (in the vicinity of its centre) or between 
two parallel disks. These flows can, probably, be produced in a laboratory if the 
velocity and pressure distributions at  ‘infinity’ in both the analytical solutions 
and the corresponding experiments are similar. However, Cobb & Saunders’s 
(1956) comparison between the experimental and analytical results as well as 
Wagner’s (1948) analysis seem to imply that KBrmBn’s flow can be reproduced 
by rotating a disk in a large body of otherwise quiescent viscous fluid. Thus these 
authors not only overlook the effect of the conditions at  r = 00 but also disregard 
the non-vanishing of KkmBn’s velocity field as z -> 00. Again, Stewartson 
discusses his cardboard disks experiment without mentioning the similarity 
between the physical conditions prevailing at  the rim and the corresponding 
analytical results for r = co. More serious than these omissions is Popper & 
Reiner’s (1956) erroneous conclusion that the observed phenomenon of negative 
8p/& in the air gap between two disks either contradicts Stewartson’s result 

p = 72, + k,r2 with k ,  2 0, 

or indicates that in this case the Navier-Stokes equations are inapplicable. It 
has not yet been shown that at  the hole which connects the manometer to their 
apparatus, as well as at the outer rim of the air gap, the flow resembles Stewart- 
son’s analytical results for r = a (=  finite constant) and r = co, respectively. 
Furthermore, in this ring-shaped domain a series form of solution (equation (7)) 
which includes negative powers of r may be admitted. Consequently, though 
either Reiner’s (1958) or Taylor & Saffman’s (1957) physical explanations of this 
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phenomenon and their assumption about the behaviour of the air may be correct, 
it  is not impossible that a formal mathematical solution of equations (1)-(4) 
together with (6a )  could be associated with a negative pressure gradient. 

In  the case considered here, the motion in the cylindrical region 1 > r ,  z < d / R ,  
like the flows considered by Batchelor and Stewartson, is governed by equa- 
tions (1)-(4) and (6). However, the torsional motion is obtained in the present 
work as part of a solution in a wider domain, at the bounding surface of which 
conditions are imposed on all three velocity components. This analysis also 
differs from Stewartson’s in that here a velocity field is assumed which is of a 
much more general nature than that given by equation (5). This is so, first, 
because in this work a series form is assumed and, secondly, because the coefi- 
cients in this series depend on all the boundary conditions of the problem. The 
proposed series form of solution could have been applied to the Batchelor- 
Stewartson problem merely by adding three boundary conditions at  the surface 
r = 00. However, arbitrary choices of additional conditions are unlikely to 
yield a solution which represents a flow that can be reproduced in a laboratory. 
The flow considered here was chosen as the subject of this work because it is 
bound to take place in a large, flat-bottomed tank when a long vertical cylindrical 
rod is rotated in it, and when this rotation is the only source of disturbance. 
Accordingly, the conditions imposed at the non-solid surfaces, r > 1,  z + 03, and 
z > 0, T + 03 are that the three velocity components should be finite, while at  the 
solid surfaces z = d/R, r < 1; x > d / R ,  r = 1;  and z = 0 tangential and normal 
components of velocity are assumed to be known. Nevertheless, since the gap-to- 
diameter ratio of l /S  considered here is fairIy small, it  is possible to compare this 
analysis and Stewartson’s, where this ratio is assumed to approach zero (though 
he compares his analytical results with experiments in which it is as large as 5/6). 
The pressure distributions associated with the two solutions turn out to be 
radically different. Thus, in the present case, apjar is not positive everywhere 
on the surface z = d/R, r < 1. Furthermore, unlike Stewartson’s case, here the 
pressures at  the stationary and rotating surface, p(r ,  0 )  and p(r, d/R),  are not 
equal. These results are consistent with the contention that Stewartson’s flow is 
not the unique solution of the problem posed by him and renders questionable 
Popper & Reiner’s interpretation of Stewartson’s work. 

2. Analytical development 
In  terms of the stream function @(r, z )  and the operator A defined by 

u = +(a@/az), w = -+(a$/ay), 

A r -  - - +-- :$J :;z, 

equation (4) is satisfied identically, (2) reduces to 

Re[(a@/az) (av/ar) - (a@/&) (av/ar) + r-lv(a$/az)] = A(rv), (2’) 
and by cross differentiating (1)  and (3) we obtain 
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As stated previously, the boundary conditions at  the solid surfaces are 
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(9) 

( 10) and @ = 0, a@/an = 0, 

where n is the direction normal to these surfaces. The remaining boundary 
conditions are that 

(11) 

I v = O  at  z = O ,  ( O < r < o o ) ,  
= r at z = d/R,  (0 < r < l), 
= 1 at z > d/R (r  = l), 

v, r-l(a@/az), r-l(a@/ar) be finite 
as r+cc ( z  > 0) ,  andas z+oo (r > 1). 

It is assumed that v and @ can be expressed in the forms 

The absence of odd and even powers of Re in the expressions for v and @, respec- 
tively, follows from the fact that v should, yet u and w should not, change sign 
with Q. The expansions for v and @ start with (Re)O and (Re)l, respectively, 
because when Re vanishes equations (2’), (9) and (11) yield a non-trivial finite 
solution while (8) together with (10) and (11) yields a trivial one. These expres- 
sions are substituted into equations (2’) and (8) and then the coefficients of equal 
powers of Re are compared, yielding 

0 = A(r&), (20) 

- 2&(aV,/Lk) = AAY1, (81) 

(22) (8YJaz) (aV,/ar) - (aYl/ar) (a&/&) + r - l (W,/az) V, = A(r&), 

and so on. On the left-hand sides of equations ( S Z j )  and (Sajfl) there are only 
coefficient functions of indices lower than 2j and (2j+ l),  respectively. Hence by 
imposing the appropriate conditions on V, and Y2j+l, we can obtain these func- 
tions as the solution of second- and fourth-order boundary-value problems. 
Though the boundary conditions (9), (10) and (11) can be satisfied in many 
different ways, we choose to let V, satisfy equations (9) and (1 l ) ,  make Qi, Y2j-l 
and aY2j-l/an for j > 0 finite at  the non-solid boundaries r > 1, z+co and 
z > 0, r+oo and make them vanish at the solid ones. The advantage of this 
choice is that the solution for each of the coefficients is independent of Re. Thus 
the solution obtained in this manner holds for a range 0 < Re < f i e  where f i e  
depends upon the convergence of the series expressions for v and @ in the ( r ,  z )  
domain under consideration. 

When Re vanishes the solution has the following form: 

u = w = 0, v = V,(r,z) ,  

and since V, is independent of Re this is the so-called ‘Stokes flow’ for the problem 
considered. 
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As a first step towards the evaluation of V, we obtain a solution of the simplified 
boundary-value problem 

(13) I r-lA(rV,) = 0 for 1 < r < co, 0 < z < co, 
V,(r,O) = 0, &finite as r , z+oo ,  & ( l , x )  = 1.  

The first two boundary conditions together with the governing equation imply 
that & can be expressed in the following Fourier-integral form 

in which I1 and Kl are the modified Bessel Functions of the first and second kind. 
In  view of the finiteness of V, at infinity the former must be excluded, so that b(y )  
vanishes identically. The function a(?) is then obtained from the last of the 
boundary conditions to be satisfied. Thus the solution for V,(r,x) in the wider 
domain outside the gap and away from its inlet dlR > z > 0, r = 1, is given by 

This expression decreases rapidly with r and approaches the value r--1 as z 
approaches infinity. These features will be shown to be compatible with results 
which follow from physical rather than mathematical considerations. 

Inside the gap the solution given by (14’) does not hold, and at  the vicinity of 
the inlet to the gap it is inaccurate. Hence a solution for V, which holds in the 
gap region has to be obtained otherwise. The latter was made to match the 
former solution along the boundaries x = 4, 1 < r < 5 and 0 < z < 4, r = 5 ;  i t  
satisfies equation (9) along the solid boundaries, and satisfies equation (2,) every- 
where in the domain bounded by these limits. This solution was obtained by 
means of the relaxation method described by Allen (1954). Thus instead of V, 
being evaluated as a continuous function of r and z it  is evaluated at the nodal 
points of a rectangular grid of mesh lengths r. We designate by x(j) the values of 
any continuous function x at the nodal points j = 0,1,2,  .. ., 12 which are 
distributed around the local origin designated by 0 as shown in figure 1. It can 
be shown that the following relationship holds within an error of O(74): 

where i = r / T .  Thus the values of V, are adjusted so that inside the ( T ,  2)-domain 
considered, equation (2J is (approximately) satisfied at every one of the nodal 
points taken as a local origin, while at  the nodal points on the boundary is given 
by (9). Figure 2 represents the numerical solution for l O O V ,  obtained with mesh 
length T = &. Figure 3 represents the solution in a smaller part of the gap area 
obtained by means of two consecutive refinements with mesh lengths T = t and 
T = &. Boundary values in the maps of figures 2 and 3, which were calculated 
from equation (14’) or transferred from figure 2, are underlined. Other values of 
loo& along the ‘internal’ boundaries are obtained by interpolation. 
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FIGURE 2.  Solution for lOOV, near the gap inlet. 

Next Yl is obtained by making use of the solution for % and the following 
finite difference approximations (see figure 1) : 

2 x ( a X / w  = X(O)(X(2 )  - X(4))/7-, 
4 8 12 

li=l k=9 k=9 
= T-4 {20x(0)  - x ( k )  f c X(k)  + c X ( k )  

+ i-1[4(x(d - x ( 3 ) )  + (x(11) f x ( 6 )  f x ( 7 ) )  - (x(9) f x ( 5 )  + x(S)) 
+ 3i-2[x(1, + X ( 3 )  - 2x(o,l- #i-3"x(l, - X(3)I * I 
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The calculated values of - 64 x 103Y1 are mapped in figures 4 and 5 .  These were 
obtained by first relaxing a comparatively wide net of mesh length 7 = and 
then refining the gap area by taking 7 to be &. While the maximum residues 
(see Allen 1954, pp. 2-6) in the solution presented by figures 2 and 3 are around 
1-2 units (i.e. 1 or 2 yo of the maximum value of I%\ ) ,  the residues in the solution 
for - 64 x lo3 Y1 are as high as 30 units. However, the overall sum of residues in 
the latter is much smaller than the corresponding sum at the first stage of the 
relaxation procedure, when Yl was taken to be identically zero and the residues 
were the local values of 2&(a%,/a~)7~. Consequently, though the solution for Y1 
is not by any means accurate, figures 4 and 5 represent a contribution to the 
flow pattern which is of the right order of magnitude and which is qualitatively 
correct. 

FIGURE 3. Solution for lOOV, at the inlet to and inside the gap. 

In  view of the asymptotic behaviour of V, (shown in figure 2), the initial 
residues 2&(aq/az) drop very rapidly as (r2+ z2)* increases. Since the solution 
mapped in figures 4 and 5 is obtained by varying the values of Y, in the vicinity 
of the points where the residues are non-zero or non-negligible, in the final stage 
of relaxation Y, also approaches zero as (rZ+z2)4 gets larger. This behaviour is 
not restricted to Y,, and is in agreement with the more general treatment which 
is carried out in the Appendix. There, we obtain the solution of the boundary- 
value problems 

(15) I r-'A[rII(r, z) ]  = t (r ,  x ) ,  

II(1,z) = 0, I I ( r , O )  = 0, II finite a t  00, 

and 1 (16) 
AAI'(r,z) = d r , 4 ,  

I' = aI'/an = 0 a t  r = 1 and z = 0, I', W/an finite as r ,  x + 0 0 ,  

in the simplified domain 00 > T > 1, co > x > 0. The functions t ( r ,  z )  and q(r,  z )  
represent the left-hand sides of equations (2,) and (SZj+,), respectively. It is 
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shown that when these decrease sufficiently rapidly with (r2 + 9) , so also do the 
solutions II and J?, which designate any of the functions V, and yP2i+l, respec- 
tively. Inasmuch as the presence of the gap does not essentially affect the 
solution in the wider field one may, from this study, infer information about the 

7 / ,  // / /  //////// //// /// /// /7 : r  

FIGURE 4. Solution for - 64 x lo3 Y,, near the gap inlet. 

///// /// // / / / / /  // ////////// / / / / / /  / / /  
- 

FIGURE 5. Solution for - 64 x lo3 Y,, at the inlet to and inside the gap. 

asymptotic behaviour of V, and Y2i+l. It is thus concluded that this feature of 
vanishing rapidly with increasing (r2+z2)* is carried from the V& and YZjtl of 
lower index to those of higher index. This conclusion leads to results which are 
physically plausible. Since, as z approaches infinity only V, is non-zero the flow 
there is given by u = w = 0, v = r-1. 
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This is the flow which results from the steady rotation of an infinite, rather than 
semi-infinite, circular cylinder immersed in otherwise quiescent fluid. Indeed, 
this is the z-independent solution of equations (1)-(4) which satisfies the condi- 
tions of zero slip and zero normal velocity a t  the boundary r = 1, - cc < z < 00, 

and which is finite at infinity. Similarly, the vanishing of all the coefficient 
functions, and hence the entire flow, as r approaches infinity, is plausible, since 
it implies that the disturbance caused by the rotation of the cylinder is local. 

3. Results and conclusions 
When Re is 10 and only the first term is retained in each of the series (12) the 

maximum value of (u2 + w2)* is about 5 yo of the maximum value of Ivl, which is 
unity. Furthermore, the absolute value of the left-hand side of equation (22) 
exceeds 5 x only at  a few nodal points near the inlet to the gap. The sign of 
this varies. Analysis similar to that carried out in the Appendix as well as 
experience in relaxation techniques with the differential operator of equation ( 2 )  
thus indicates that when Re = 10, IKRe21 may be as much as but only in 
a small region. These relative orders of magnitude suggest the existence of 
a range of Reynolds numbers, perhaps Re < 5 roughly, in which the expressions 
for v and $ converge at  every point in the field. A rigorous proof of convergence 
may, perhaps, be achieved by obtaining a general expression for V,i and Y2j+l, 
in terms of the Green’s functions for equations (22i) and (S2j+1) similar to those 
obtained in the Appendix. It is significant that if the expressions for v and $ 
do, in fact, converge, the solution for each of the coefficient functions and hence 
the solution for the flow is unique. 

On the assumption that the first-term approximation with small Re is valid, 
inside the gap the circumferential component of velocity is found to be given by 

(17) 
while outside the gap grad v is directed along concave curves which intersect the 
lines r = 1 and z = 0 at right angles. These curves are longer than d/R so that 
gradv is much bigger inside than outside the gap. Hence there is a region of 
abrupt transition near the inlet to the gap. The flow in the 8 = const. planes 
can thus be treated as one which results from these variations of 6, or of the 
centrifugal force associated with it, Thus the signs and locations of the stream- 
lines $ = Y,(Re)l = const. show that the motion in this plane is clockwise along 
closed paths. The paths which correspond to small (-$) lie partly inside the 
gap, but the centre of this ring-vortex is near r = 2 ,  z = 1. 

Flow past a body is often treated as a combination of a ‘main’ infinite-Re 
potential flow and a boundary-layer ‘correction’. The proposed analogous ap- 
proach is applicable when the dominant effect is that of viscosityrather than that 
of inertia. Hence in the present analysis the zero-Re Stokes flow plays the role 
of the ‘main’ one and the motion in the 8 = const. planes that of the ‘correction’. 

The pressure distribution along the surfaces z = 0 and x = d / R  is evaluated 
by assuming, together with equation (12), 

v 2i V, 2i 4rz, 

W 
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It is further assumed that, provided Re is small, the first term is a satisfactory 
approximation. Equations (1)  and (10) yield the following relationship, 

r(8Po/8r) = T‘i + a3Yl/az3. 

Hence using equations (10) and (17) and the finite difference approximation to 
(8,) and also using 

it is found that the pressure gradients are given approximately by 
a3x/az3 = b ! ( l O )  - x( l2 )  + 2(x(4) - x(Z))) 2-1T-37 

and 

In these relationships the expressions inside the braces are the contribution of 
the viscous forces to equation (1). Thus, according to the results presented in 
figure 5, the pressure gradient along z = 0 is positive and balances the difference 
between radial shear exerted by the solid surface and the smaller viscous shear 
acting in the ( - r )  direction along an adjacent plane z = const. Conversely, on 
z = d / R  the contribution of the viscous forces is negative and at  some points near 
r = 2 it  is as big as the contribution of the centrifugal force, represented by the 
separate term r .  This apparently contradicts the assertion that the flow in the 
( r ,  z)-plane is ‘secondary’ or one which follows the variations in centrifugal 
forces caused by gradients in the predominant ‘primary’ flow. However, it 
should be borne in mind that the ‘secondary’ flow inside the gap is ‘driven’ not 
only by the local variations in v2 but also by those existing outside the gap. 

Appendix. The vanishing of I’ and II at infinity 
It follows from equation (15) that the function q(r,  z )  defined by 

aq/ar = II 
is governed by the following differential system 

I 
i 

q ( r , ~ )  = 0, aq/ar = o at r = 1, 7 finite at  m.1 
Here V2 is the usual three-dimensional Laplacian operator, so that the general 
solution of this problem can be obtained by making use of potential theory. 
Thus a Green’s function, of the form 

Gq(r,  z ,  r ’ ,  z ’ )  = - (4n)-l {[r2 +r’2 + 2rr‘ cos 8’ + ( 2  - z’)~]I-* . -7T 

- [? + r’2+ 2rr’ cos 0’ + (2 + zf )2] -+w 

47) Ko(7d sin (74 d 7 ,  (A 2) 

is sought in which the two bracketed terms of the first integral play the roles of 
point ‘charges’ or ‘sources’, located a t  the points (r’,O’, -2’) and (r ‘ ,O’,  +z ’ ) .  
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The second integral is a rotationally symmetric function which is zero a t  the 
surface z = 0 and is harmonic throughout the space r > 1, z > 0. I n  view of the 
finiteness of G, a t  infinity, equation (A 2), like (14), does not contain a term of 
the form I o ( y r )  sin (yz) .  The function c(y) is evaluated by imposing the condition 
a t  r = 1. The Green’s function sought is thus 

- [r2 + r’2 + 2rr’ cos 8’ + (2 + 2721-4 

where !? is (1  + r‘2+ 2r’ cos O’)$. Therefore, provided t ( r ,  z )  a t  infinity is O(r2 + z2)-’ 
where ,LL > 1, the function 

has the desired asymptotic behaviour. 
This conclusion is, of course, based on the assumption that the expression 

(A 2) for G, contains a harmonic function which has a particular form. It should 
be stressed, however, that the choice of an infinite sine-transform only implies 
that, in accordance with the conditions of the problem, G, is finite as z approaches 
infinity. Nevertheless, this choice, like that given by (14), does not necessarily 
imply that G, must vanish a t  infinity. Consequently, though the foregoing is not 
a rigorous mathematical proof, one can safely assume that these results are valid. 

It f o l l o ~ s  from equation (1 6) that the function q5 defined by means of 

r(aq5lar) r(r ,z) 

should be finite and have finite derivatives a t  infinity and also satisfy the 

Again we seek a Green’s function of the form 

G# = - (%)-I ( [ r 2  + r ”+  2 ~ ’  cos 8’+ (2 - ~’) ‘ ]4 KT 
- [r2+ r’2+ 2rr’ cos 0’ + ( z  + 2’)2]&)d0’ + 4mzz‘ e-(z+z’)V,,(r’h) Jo(rh)dh 

/Om 

+jam [m@)Ko(IBr) sin (pz) + v f r h ’ l ( p r )  sin cp., + ~ ( p ) ~ ~ o ~ p ~ ~ ~ c o s  ( P 4 l W  
(A 5 )  

Since in terms of Cartesian co-ordinates x, y, z we have 

V2(x2 + y2 + 22): = 2(x2 + y2 + 22) -& ,  

the two bracketed terms in the first integral are biharmonic everywhere, except 
a t  (r ’ ,  0‘, 2 z’) where they have residues (in the potential theory rather than the 
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relaxation or complex variable sense) of -88n. The integrals with respect to 
/3 and h are either harmonic or biharmonic everywhere in the field. Again the 
requirement of finiteness of a$/ar at  infinity excludes from the infinite integrals 
terms of the form rIl(Pr)sin(/3z), Io(/3r)sin(,8z) and zehzJo(hr). In  view of the 
x-wise skew-symmetry, G4(r, 0, r ' ,  2') vanishes. By means of integration by parts, 
the three other boundary conditions together with the recurrence relationship 
K,(Pr) = -K&?r) yield 

- [p2s(P)K;(,8) sin (Pz) ]~"  = 

Since it is assumed that 

the boundary terms resulting from the integration by parts vanish. In equation 
(A 6) H ( r ,  z )  is the sum of the first two integrals on the right-hand side of (A 5). 
Bateman (1959) has shown that the contributions of these iutegrals to the 
expression for (aH/az),=, represent the potential in the plane z = 0 due to a 
uniform ring of radius r' situated in the plane z = z' or z = - z'. These contribu- 
tions are equal in magnitude but have opposite signs so that a(H/az),,, vanishes. 
Consequently the inverse of the sine- and Hankel-transforms of (A 6) yield 

P N P )  + s(P)  + d{Pl(P)}/@ = 0, 

- P N P ) K l ( P )  - Pl(P)Ko(P) + d{Ps(P) Sl(P)}/dP 

= (sin (pz') In (1 + r' cos 8') Ko(Fp) d8' 
27T2 - 7 l  

- 4nz'/orn (A2 +P2)-2AzPe-Az'Jo(r'h)Jl(h)dh 1 , 

- 4nz'/orn (h2+P2)-2~h3e-X2'J0(r'h)J;(h)dh . (A 8) 

Without actually solving them it is possible to verify that these equations 
together with (A 7)  yield unique solutions for s(P) ,  Z(P) and m(P) and that when 
/3 is large these are O(ePP-*). It therefore follows that as r increases aG&ar and 

) 
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its derivatives rapidly approach zero, and aG&ar becomes independent of z as i t  
approaches infinity. Thus, since away from the point (r', z ' )  G4 is biharmonic, and 
since aG,p and a2G/ar2 vanish both for r = 1 and when r approaches infinity, 
aG$lar is zero for large z ,  and hence everywhere at infinity. 

Most of this work was carried out at the Aeronautics Department of the 
Imperial College, London. Mr S.Ladani and Mr M.Dinur of the Mechanical 
Engineering Department of the Technion in Haifa (Israel) computed the results 
given in figures 2-5. The author wishes to thank Mr P. G. Simpkins of the Aero- 
nautics Department of the Imperial College for very useful comments and 
suggestions as well as for his help in preparing this paper. 
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